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Abstract 

 In this article, the sequence of bounded variation was considered and its 

various properties, with examples and counterexamples, were studied in detail. Also, 

the study focused on the relationship of the sequence of bounded variation with 

monotonic sequences, convergent and divergent sequences. Further, some necessary 

and sufficient conditions and sometimes only necessary condition was studied, where 

sufficient condition is not always true, with examples. The space of the sequence of 

bounded variation also considered, which is denoted by  . Here it is shown that    is 

closed with respect to addition and multiplication. Hence with respect to some norm 

   is a Banach space. Many studies are being found in history regarding the 

summability of sequence of bounded variation with respect to different types of 

infinite matrices. Here the summability properties of the sequence of bounded 

variation were not considered.  
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1. Introduction  

 

A few discussions of the sequence of bounded variation are available in 

Iyer (1977) and Loya, (2006), the nature of the transformed sequence of a sequence of 

bounded variation by some regular infinite matrix has been studied by various authors. 

It is also known from the literature of Iyer (1977) and Lahiri (1996) that the space of 

the sequences of bounded variation is a Banach space with a certain norm. Further 

some applications of sequences of bounded variation are available in the literature 

(Kirişci, 2014 & 2016). Hence we shall study a series of results on such sequences in 

regard to convergence. First, we shall recall and introduce some definitions and 

results, useful for our study. 

 

DEFINITION-1.1: 
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Let        be any sequence of real numbers and we write    =         , for 

all   . Then   is said to be of bounded variation (or   is variationally bounded) if 

∑      
 
     is convergent i.e.  ∑     

 
   is absolutely convergent. Let us denote 

by    , the family of all such sequences of real numbers. We write   (x)= 

∑     
 
    , for all    . Clearly,      if {  ( )} is convergent i.e. if   a real 

number   > 0 such that   ( ) <    for all    . For simplicity, we write, if       

then    is    .      

 

DEFINITION-1.2:  

 

Let   =        . Then the number    )= 
   

   
    ( )}, if it exists, is called the 

total variation of  . 

 

Clearly,   )≥0 and    )={
                                                    

                                                                        
 

 

Thus    ) may be finite or infinite and  :       where    is the set of non-

negative real numbers. 

 

RESULT-1.3: Every absolutely convergent series is convergent but the converse is 

not necessarily true. 

 

2. MAIN RESULTS 

 

In this section, we shall prove our main theorems. Let  ,   ,   (i),   (d) 

and D denote respectively the family of convergent sequences, bounded sequences, 

monotonic increasing sequences, monotonic decreasing sequences and divergent 

sequences of real numbers.  

 

THEOREM-2.1: 

 

If       then      but the converse is not always true.  

 

Proof: Let   =         ⇒   = ∑     
 
    is absolutely convergent ⇒ (by result 1.3) 

  is convergent. 
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Now, for some      ,   = ∑    
 
   , (the     partial sum of  ) =        .  

s is convergent ⇒  i 
   

   =   (  )(say) exists finitely in  .   

⇒ i 
   

 (       )=  , for some real number   ⇒  i 
   

   =      , which is finite 

⇒     . 

The converse follows from the following. 

 

Example-2.1:  

 

Let   =      where     =      .
 

 
  ,  for all   ,  =1,2,3,........  Then  i 

   
   = 0   

Again,      =         =       .
 

 
        .

 

   
 =       . 

 

 
 + 

 

   
  = 

 
 

 
  

 

   
  

= 
    

      
  >  

   

      
 = 

 

 
  (since      >    ) ⇒ ∑      

 
     > ∑

 

 

 
    ⇒ 

∑      
 
    is divergent as ∑  

 

 

 
     is  so  ⇒      . 

 

Whereas      (    but   is not monotonic). 

 

COROLLARY-2.2:  

 

If       then    is cauchy  sequence. 

 

Proof: The proof is trivial, as every convergent sequence of Real numbers is cauchy 

sequence, hence from THEOREM-2.1, the result follows. 

It is immediate that the converse is not necessarily true. 

 

THEOREM-2.3:  

 

Every sequence of bounded variation is bounded but the converse is not necessarily 

true. 

 

Proof: From THEOREM-2.1, it follows that every sequence of    is convergent and 

hence bounded.  

 

The converse follows from the following 

 



 St. Theresa Journal of Humanities and Social Sciences                                                                                       

 

                                                                               Vol.4 No.1 January-June 2018       66 

 

EXAMPLE-2.2:  

Let us consider the sequence   =     , where   =0, when   is even and 
 

 
  when   is 

odd (i.e.    = 0 and      = 
 

 
 ) ; then clearly x is bounded. 

 

THEOREM-2.4:  

 

Any monotonic sequence is not always   . 

Proof: The proof follows from the following 

 

EXAMPLE-2.3: 

  

Let   =      where    =   , for all   ,   =1,2,3,......... Clearly,   is monotonic 

increasing i.e.  

       . Further ∑      
 
    =∑           

   =∑   
     which is divergent 

⇒      . 

A similar conclusion can be had for any sequence i.e.      . 

 

Following from THEOREM-2.1 and THEOREM-2.4, a natural question may be 

posed- under condition(s), a convergent sequence and a monotonic sequence are   . 

The following theorem answers both the questions. 

 

THEOREM-2.5:  

 

Every monotonic convergent sequence is   . 

 

Proof: Let us first consider a monotonic non-decreasing sequence   =      which is 

convergent to some        . Then              for all      ,   = 1,2,3,......... and    

    for all    , 

 

 =1,2,3,...Now,∑      
 
    =∑         

 
    =∑        

   

   = i  ∑          
 
      =  i            =  ―   <  +   

⇒ ∑       
 
    is convergent ⇒       

 

The conclusion is same for a non-increasing sequence. 
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NOTE-2.5.1: 

  

Monotonic divergent sequences may not always  , which follows from the following 

 

EXAMPLE-2.4: 

  

Let   =      , where     =    
 

 
 , for all    . 

Now         =      
 

   
 ―   ― 

 

 
 =1 + 

 

   
 ―  

 

 
  =  1― 

 

      
  >  0  for all  

    

⇒    <       for all     ⇒     is strictly increasing sequence and is divergent. 

Again, ∑       
 
   =∑          

 
   =∑    

 

      
  

   =∑    
 

      
  

    

 ∑
 

      

 
      =∑

 

     

 
      which is divergent. 

⇒       . 

 

Similarly, monotonic decreasing divergent sequence is not    (  =      where   =   

will give the conclusion). 

 

THEOREM-2.6: 

  

If        , then     ,         where  =     ,   =     ,        =          and 

   =       . 

 

Proof:  ,        ⇒ ∑       
 
   < +   and  ∑       

 
    < +   ........(i) 

Also, by Theorem-2.3,   M1, M2 >  such that       M1 and       M2 for all 

   . 

Let   =     where     =         for all    . 

Then      =         =                                 )  

(          

                                    

⇒ ∑       
 
    ∑       

 
   + ∑       

 
   <    (from (i)) 

⇒        i.e.           . 

 

Next, let    =      where     =      , for all    . 
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Then,     =         =               =             

                                            +                  M1 

          + M2           

  M1  ∑       
 
   + M2 ∑       

 
   <  

⇒ ∑       
 
   is convergent ⇒       i.e.        . 

 

Reciprocal of a sequence of bounded variation may not be of bounded variation; 

e.g. if for any sequence       with      as    , or    is eventually zero, then 

 
 

  
  is not bounded; therefore, to extend this result, we must exclude these types 

of sequences which are arbitrarily closed to zero.  

 

THEOREM-2.7: 

  

If    =          and it is bounded away from zero, then  
 

  
      . 

 

Proof: 

  =         ⇒ ∑      
 
    <  +  ....(i) 

   is bounded away from zero 

⇒  M > 0 such that      M,  for all    ..............(ii) 

Let    = 
 

  
  ,  for all    . 

Then      =         = 
 

  
  

 

    
 = 

          

          
   

 

   │       │   for all 

    

=  
 

         

⇒ ∑       
 
     

 

   ∑       
 
   <+  ⇒ {  } i.e. {

 

  
}     . 

 

NOTE-2.7.1:  

 

From Theorem-2.6, the following results are immediate: 

i) ∑            
 
     ∑       

 
   + ∑       

 
               

⇒                    . 

ii) ∑           
 
      M2 ∑       

 
   + M1 ∑       

 
     M2    )+M1      

⇒         M2      +M1      
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From Theorem-2.7, it follows that  

iii) ∑   
 

  
  

       
 

   ∑       
 
      

 

        ⇒  ( 
 

 
 )    

 

        . 

Let        and     . Then         │  │      .... 

In fact       and      ⇒ ∑       
 
    = ∑            

 
   = ∑         

   

      

=│λ│∑      
 
      │λ│      ⇒  (λ  )   │  │   ( ) . 

 

THEOREM-2.8:  

 

Any sequence   =      is of    iff it can be expressed as a difference of two 

monotonic convergent sequences i.e. there exists monotonic convergent sequences 

     and       such that    =    ―    , for all   ,   =1,2,3,.........  

 

Proof: Necessary Part: 

Let   =          ⇒  ∑      
 
    <  +     

We write   =∑      
 
   , for all     .Then, clearly      is a monotonic non-

increasing and 

bounded , as ∑      
 
   is converged (so is     ). 

We define    =    ―    , for all    . Then       is convergent as both of      and 

     are 

convergent (following from Theorem-2.1). 

Now,     ―      =    ―    ―      +      = (   ―     ) ―(    ―     ) 

= ∑      
 
   ― ∑      

 
     ―(    ―     ) 

=      + ∑      
 
     ― ∑      

 
     ―(   ―     ) =      ―      0. 

 

Which is true for all    . This shows that       is monotonic non-increasing. 

Hence, by theorem-2.5,         . 

 

Thus,   =    ―    , for all    , where      ,         , whenever         . 

Also,      and      are monotonic non-increasing sequences which are convergent. 

Similar conclusion can be made using monotonic non-decreasing convergent 

sequences. 

 

Hence every sequence of     can be expressed as the difference of two monotonic 

convergent sequences. 
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Sufficient Part: 

Let      be any sequence which can be expressed as the difference of two monotonic 

convergent sequences, say,      and      i.e.   =    ―    , for all    .  

 

Now      and      are monotonically convergent 

⇒     and      are variationally bounded (by Theorem-2.5) 

⇒        is variationally bounded (by Theorem-2.6) 

⇒     is variationally bounded . 

Hence the theorem is proved. 

 

REMARK-2.1: 

 

1. Any divergent (also non-convergent) sequence may not be of bounded 

variation. 

 

Proof: Let us consider the sequence   =      where    =  
 

 
 , for all    . Clearly, 

  is divergent. 

 

Again,     =         = (   
 

 
 )― (    

 

   
) = 

 

      
 ―1 < 0                                              

[    >   ⇒      >   2   ,as     ⇒ 
 

      
 < 1  for all    ] 

⇒   is strictly decreasing. 

Also, ∑      
 
   = ∑  

 

      
      

   = ∑    
 

      
    

    = ∑
      

      
  

     

∑
 

      
  

    

[ 2   ⇒  2
+       ⇒  2

+  ―1    ] 

= ∑
 

     
  

    which is divergent. 

⇒   is not of bounded variation. 

 

Further, we assume the sequence   =      where    =       , for all    . Clearly, 

  is bounded and non-convergent. 

 

Also,       =          =        ―         =        ―            

=               =         = 2.        = 2.          [since          ].              

⇒∑      
 
   =∑   

    which is clearly divergent ⇒     is not bounded variation. 
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Hence it’s the result. 

 

2. The difference of a monotonic convergent sequence and a monotonic divergent 

sequence may not be of bounded variation. 

Proof: Let us consider two sequences  =     and   =     where   =―   and 

  = 
 

 
  for all    . Then clearly,   is monotonic divergent (negative) and   is a 

monotonic convergent (positive) sequence. 

 

We write   =    ―    = ―   ― 
 

 
 = ― 

    

 
  for all    . 

Now,       =          =    
    

 
 

        

   
 =      

 

   
     

 

 
 = 

   
 

      
   

=  
      

      
     

 

      
 =  

 

   
                [as           ] 

⇒∑      
 
     ∑  

 

   

 
      ⇒  ∑      

 
    is divergent as R.H.S. is divergent. 

 

This shows that        is not of bounded variation. 

 

3. The difference of two monotonic divergent sequences may not be of bounded 

variation. 

 

Proof:  

Let    =   + 
     

 
 , for all     and    =  , for all    . Then, both      and      

are monotonic divergent. Let’s write   =    ―    = 
     

 
  , for all   . 

 

Now,       =         = 
     

 
 

       

   
 =  

     

 
 

     

 
 = 

     

      
 = 

    

      
 

> 
   

      
 

= 
 

 
  ⇒ ∑      

 
   > ∑

 

 
  

    ⇒  ∑      
 
    is divergent as ∑

 

 
  

   is divergent ⇒ 

     is not of bounded variation. 

 

Now the behavior of the family    of sequences of bounded variation is studied 

below: 
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THEOREM-2.9: (Lahiri, 1996) 

 

The family    of sequences of bounded variation forms a vector space over the field 

  of real numbers under the addition and scalar multiplication defined in it by:  

for all   ,       , λ    ,     =          and     ={ λ   }  where   =     and 

 =    . 

 

Further, the space    will be a Banach Space under the norm defined by [2.1]  

‖ ‖ = │   1│+ ∑            
 
   ,  for all        . 

Proof is easy. 

 

3. Conclusion 

 

The study focused on some properties of the sequence of    and also 

investigated the relationship of the sequence of    with bounded, convergent, Cauchy 

and monotonic sequences, with sufficient examples and counterexamples for 

converse. Also, it is found that monotonic convergent sequence is     but not a 

monotonic divergent sequence. Further, the algebra of sequences of    was studied, 

and noted that the ratio of two sequences of     may not be so; it is    if the 

denominator sequence is bounded away from 0. It is also found that a necessary and 

sufficient condition for a sequence of     can be expressed as a difference of two 

monotonic convergent sequences.  
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